Motivation

= Real-world data is often heterogeneous and unbalanced. Differences in size, structure, or

support—due to noise, missing data, or sampling variaion—make many practical datasets
difficult to compare directly. This motivates the need for robust matching methods that can
handle such imperfections.

= Classical optimal transport (OT) has limitations. It assumes full mass matching and requires
measures to lie on the same domain, making it ill-suited for comparing objects with unequal
mass or differing geometries.

* Partial Gromov-Wasserstein (PGW) offers a principled generalization of classical OT. PGW

allows for partial transport between distributions supported on different metric spaces, making
it more robust for real-world, noisy, and incomplete data.

Contribution: We propose the Partial Gromov-Wasserstein (PGW) problem and
prove that it gives rise to a metric between mm-spaces. We then develop
numerical solvers for the PGW problem and demonstrate its utility in
experimental applications.

Gromov-Wasserstein Problem

= Gromov-Wasserstein (GW) relaxes the need for a common metric space. It compares
istributions supported on different metric spaces by aligning their intrinsic relational structures.

= Compact probability metric measure spaces (mm-space), X = (X, dx, 1), Y = (Y, dy, ) wit
unwe P(X),vePY).
GW(X,Y) := inf dx (z,2") — dy(y,y)|*dy(z,y)dy(z', y).
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» GW defines a metric for probability measures in different metric spaces.
= [nvariant to rigid transformations (rotation/translation).

Partial Gromov-Wasserstein Metric

Given mm-spaces X = (X, dx,u),Y = (Y,dy,v), where ye M, (X),ve M_(Y):
PGW (X,Y) := inf dx(z,2') — dy(y, y) dy(z, y)dy(a', ) + M |pu® — 8% + |24 — 584 ).
Yel<(1,v) J( X x V)2
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Theorem 1. PGW,(-, -) defines a metric between mm-spaces for A > 0.

* As A — o0, PGW\(X,Y) - GW (X, Y).

= As A — 0, we allow greater mass creation/destruction, potentially discarding important
correspondences.

= As A\ — oo, we force more alignment, which may be harmful in the presence of noise.

Frank-Wolfe Solver

Shape Retrieval

In the discrete setting, let p = >, pid,, and v = > 5° | q;0,,. The PGW problem becomes
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= Step 1. Gradient Computation:
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ael0,1 Figure 2. Shape retrieval on two 2D shape datasets. We represent each shape as an mm-space and compute pairwise
distances using GW, MPGW, UGW, and PGW (ours). In each row, the first figure visualizes an example shape from
E) (1 — o )Ay\F ) each class in the dataset, and the second visualizes the pairwise distance matrices.
- - Table 1. We train an SVM model with a kernel based
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= Requires an initial guess, ~\Y. If there is no prior knowledge, we can take on each of the computed pairwise distance
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Figure 1. Shape matching between source distribution (red point cloud) and target distribution (blue point clouds). In

the first row, both distributions are 2D; in the second row, the source distribution is 3D and target distribution is 2D.

We compare the transport plans computed by GW, Mass-Constrained Partial Gromov-Wasserstein (MPGW),
Unbalanced Gromov-Wasserstein (UGW), and PGW (ours).
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igure 3. Shape interpolation with PGW barycenters. In the first column, the first and second shapes are the source and
arget in experiment 1 (5% noise); the third and fourth shapes are the source and target in experiment 2 (10% noise).



https://github.com/mint-vu/PGW_Metric
https://github.com/mint-vu/PGW_Metric

