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Background and Introduction

A dominating set of a graph is a subset of its vertices such that every vertex

is either in the set or adjacent to a vertex in the set.

A minimum dominating set is a dominating set of minimum cardinality. The

task to find a minimum dominating set in a graph is called the minimum

dominating set (MDS) problem.

Figure 1. The set {4, 5} comprises a

dominating set since each vertex outside this

set is adjacent to either vertex 4 or vertex 5. It
is also a minimum dominating set since there

is no dominating set with lower cardinality.

The MDS problem is an important NP-hard combinatorial optimization

problem [1] with a wide range of applications, including social networks [2],

cybersecurity [3], and bioinformatics [4].

There are no known algorithms that can solve the MDS problem efficiently.

The purpose of this work is to propose a novel learning-based heuristic

algorithm that can efficiently and accurately approximate solutions to the

problem using graph convolutional networks (GCNs).
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Figure 2. Synthetically generated dataset of over 1000 random binomial graphs with sizes ranging

from 150-250 vertices and varying edge densities using the Erdős–Rényi model. Reduced MDS

problem to integer linear program (ILP) to label each graph with solutions and iteratively increased

complexity of each ILP to generate multiple unique solutions per graph.

GCN Design: Non-Uniqueness of MDS Solutions

A major challenge to designing a machine learning model to predict solutions

to the MDS problem is the non-uniqueness of solutions:
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Figure 3. This figure illustrates the following three unique MDS solutions for the same graph:

{0, 3}, {1, 4}, {2, 5}. A poorly designed model might produce predictions that assigns equal

likelihood to each vertex being in a solution, which is not useful.

Renders traditional single-output models ineffective for this task.

GCNArchitecture + Training

Designed GCN architecture that outputs m distinct probability maps that each

encode likelihood of each vertex belonging to MDS solution.

Allows the model to capture the diversity of MDS solutions on each graph.

Chose m = 32 after hyperparameter tuning, as this was the point at which

performance saturated.

Trained the GCN model using approximately 80% of the generated dataset,

leaving the remaining 20% as hold-out for evaluation.
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Figure 4. Computational pipeline to construct dominating sets using GCN.

Used the m probability maps as m heuristic functions where the heuristic value

of each vertex was the likelihood given by the probability map.

Implemented two metaheuristic frameworks to build dominating sets from
heuristics:

Greedy selection (GS) scheme: iteratively adds vertices with highest heuristic value to set

until solution is reached, and then prunes out redundancies.

Iterative greedy (IG) scheme: constructs solution similar to GS and then iteratively destroys

and reconstructs solution using one or more supplied heuristics.

Experimental Evaluation: Hold-Out Synthetic Data

Our approaches:

GCN-based heuristic using GS

scheme (GCN-GS)

GCN-based heuristic using IG

scheme (GCN-IG)

Comparison approaches:

Random (uniformed) heuristic in GS

scheme (Random-GS)

Traditional greedy heuristic in GS

scheme (Greedy-GS)

Traditional greedy heuristic in IG

scheme (Greedy-IG)
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(a) Comparison of different heuristics with GS +

Pruning scheme.
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(b) Comparison of different heuristics with IG

scheme. We reproduce the GCN-GS curve for

comparison.

Figure 5. Comparison of all procedures on hold-out graphs from generated dataset. Optimal MDS

sizes are displayed as ground truth. Note that the traditional greedy heuristic uses vertex degree

as heuristic value. Furthermore, the Greedy-IG is the previous state-of-the-art heuristic algorithm

for the MDS problem, while the Greedy-GS is the most commonly used.

Experimental Evaluation: Higher-Order Synthetic Graphs
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(a) Comparison of different heuristics with GS +

Pruning scheme.
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(b) Comparison of different heuristics with IG

scheme. We reproduce the GCN-GS curve for

comparison.

Figure 6. Comparison of all procedures on higher-order (number of vertices) random binomial

graphs. Optimal MDS sizes are unavailable in this setting as they are computationally intractable.

Experimental Evaluation: Real-World Graphs

Dataset Greedy-GS GCN-GS Greedy-IG GCN-IG Optimal

BZR 13.13 13.11 13.11 13.11 13.11

dblp_ct1 8.33 8.32 8.32 8.32 8.32

DD 57.7 53.56 53.75 52.48 52.48

DHFR 13.91 13.90 13.90 13.90 13.90

facebook_ct2 19.99 19.98 19.98 19.98 19.98

FIRSTMM_DB 334.32 311.00 304.00 302.10 302.10

github_stargazers 17.43 17.49 17.40 17.40 17.40

MSRC_21 15.21 14.19 14.25 13.80 13.80

NCI1 10.21 9.80 9.81 9.78 9.78

OHSU 21.34 20.67 20.65 20.51 20.51

REDDIT-MULTI-5K 98.13 98.09 97.94 97.94 97.94

Table 1. Comparison of performance of testing procedures on real-world graph datasets (our

approaches underlined). Reported figures are mean dominating set size, with best performing

procedure(s) per dataset in bold. Mean optimal MDS size is given as ground truth.

Conclusions

The GCN-based heuristic algorithms consistently outperform the equivalent

comparison approaches, obtaining near-optimal performance.

The GCN heuristics generalize to higher-order graphs than those on which it

was trained. It is also able to generalize across datasets, despite being

trained exclusively on synthetic data, underscoring the robustness of the

proposed approaches.

The GCN-IG algorithm outperforms the Greedy-IG algorithm, which was

previously considered the state-of-the-art for this problem. Hence,

our approach sets a new state-of-the-art in computing dominating sets.
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