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Motivation

Comparing complex data across different domains requires flexibility and efficiency. Many ML

tasks—such as shape analysis, graph comparison, and cross-domain learning—need tools that

can compare structured data lying on different spaces with partial correspondence.

Partial Gromov-Wasserstein (PGW) enables partial matching across metric spaces, but is

computationally expensive. Computing pairwise PGW distances scales quadratically with the

number of objects, limiting its practicality.

Linear Partial Gromov-Wasserstein (LPGW) accelerates PGWwhile preserving its robustness.

LPGW reduces pairwise distance computation from OpK2q to OpKq for K objects, enabling

scalable learning and retrieval tasks without sacrificing the benefits of partial matching.

Contribution:We propose the LPGW Embedding, extending the classical linear
OT (LOT) framework to the PGW setting. We prove that it gives rise to a metric
between mm-spaces while allowing for faster pairwise distance computations,

and we also demonstrate its viability in experimental applications.

Partial Gromov-Wasserstein Problem

Partial Gromov-Wasserstein (PGW) enables partial transport across different metric spaces. It

extends the classical Gromov-Wasserstein (GW) problem, which compares distributions supported

on different metric spaces by aligning their intrinsic relational structures.

Compact probability metric measure spaces (mm-space), X “ pX, dX, µq,Y “ pY, dY , νq with
µ P M`pXq, ν P M`pY q.
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Linear Partial Gromov-Wasserstein Embedding

Linear Partial Gromov-Wasserstein (LPGW) Embedding. Let S “ pS, dS, σq be a fixed reference

space and let tXiuN
i“1 be a series of mm-spaces. Let γi P Γ˚

ďpS,Xiq be an optimal transport plan for

PGW pS,Xiq such that γi “ pid ˆ T iq#γi
S (PGW-Monge Mapping Assumption).
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Linear Partial GromovWasserstein Distance:
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Properties of LPGW

Extends the linear GW (LGW) distance to the unbalanced setting.

LPGW defines a metric between mm-spaces.

Computational Complexity: Opn7q embedding construction, Opn2q LPGW distance.

Use barycentric projection when Monge maps do not exist.

Elliptical Disks Experiment

(a) Shapes in ellipse dataset.

(b) Reference spaces, tS1, . . . , S9u.

Points Time (min) MRE Ó PCC Ò

PGW — 46.97 — —

S1 441 0.76 0.1941 0.5781

S2 676 3.78 0.1264 0.5738

S3 625 3.13 0.1431 0.5881

S4 52 0.08 0.2542 0.8581

S5 289 0.62 0.0538 0.9871

S6 545 1.56 0.0444 0.9930

S7 882 1.91 0.0205 0.9952

S8 882 1.98 0.0198 0.9954

S9 317 0.71 0.0245 0.9949

Figure 1. We evaluate the quality of the approximation of PGW by LPGW using the elliptical disks dataset given in (a).

We compute the pairwise distances using PGW and compare against LPGW computed with each of the nine reference

spaces in (b). We report the mean relative error (MRE) and Pearson correlation coefficient (PCC). In each shape, the color

represents the mass at the corresponding location.

Figure 2. Multidimensional scaling (MDS) visualization of

pairwise distances for PGW and LPGW based on different

reference spaces.

Shape Retrieval

Figure 3. Shape retrieval on 2D/3D shape datasets. The first figure per row visualizes an example from each class in the

dataset, and the second visualizes the pairwise distance matrices computed with GW, PGW, LGW, and LPGW (ours).

Shape Retrieval (cont.)

GW PGW LGW
LPGW

(ours)

2D Dataset

Accuracy Ò 98.1% 96.2% 93.7% 97.5%

Time (s) Ó 43s 39s 0.4s 0.5s

3D Dataset

Accuracy Ò 92.5% 93.8% 92.5% 93.7%

Time (m) Ó 203.0m 203.6m 1.3m 1.8m

Table 1. We train an SVM model with a kernel based on each of the computed

pairwise distance matrices. We then report the average accuracy of the model

with stratified 10-fold cross validation. We also report the wall-clock time to

compute each pairwise distance matrix.

Learning with Transform-Based Embeddings
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(a) MNIST 2D point cloud dataset.
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LOT LGW LPGW
(b) Reconstructed digits.

Figure 4. We create training and testing datasets by applying

random rotations or horizontal flips to each digit, and we

additionally add 0%, 10%, 30%, or 50% noise to testing digits.

We then compute the LOT, LGW, or LPGW embeddings of

each digit and train a linear regression model on training

embeddings. We report the classification accuracy on the

test embeddings for each model and report the time to

compute all training embeddings and the time to compute

all testing embeddings. In (b), we additionally visualize the

reconstructed digits using each embedding method.

Data Method LOT LGW LPGW (ours)

no rotation
Accuracy Ò 89.0% 82.5% 82.5%

Time Ó 183s`16s 405s`77s 309s`84s

η “ 0
Accuracy Ò 51.2% 82.5% 82.5%

Time Ó 183s`15s 405s`77s 309s`84s

η “ 0.1
Accuracy Ò 13.4% 17.0% 81.8%

Time Ó 183s`17s 405s`88s 309s`91s

η “ 0.3
Accuracy Ò 12.5% 13.3% 75.8%

Time Ó 183s`23s 405s`145s 309s`123s

η “ 0.5
Accuracy Ò 12.5% 12.5% 72.9%

Time Ó 183s`27s 405s`248s 309s`168s

Figure 5. Shape interpolation using GW, PGW, LGW, and LPGW. In the first column, we visualize the source shape,

target shape, and reference space for LGW/LPGW. The target shape includes the addition of 30% noise.
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